第一一五章 想依靠量子力学穿越时空?那可能要搭车超弦理论!(4 / 5)

弦理论的提出,给物理学家提出了一种崭新的物质观,以前我们都把物质的基点看做一个无限小的质点,而弦理论则将其看做一条一维足够细小的线段;并且根据早期的弦理论,基于数学推导的原因,为了实现理论的自洽,需要扩展到高达26维的空间上才行;这就让弦理论成为一种玄学,当时的物理学家对于这种如此高维的时空,根本毫无概念,也无法通过试验方法对这个理论进行证伪;一个无法证伪的理论,当然也无法认可为是一个有效的物理理论。

不过,虽然标准模型不论从理论上,还是实验上都能对物质有非常完美的解释,以及精确的语言,但是从数学的角度来讲,这却并不失为一个具有『美』感的理论;为了解释物质及其相互作用力,标准粒子模型构建了61种粒子模型,分为了费米子和波色子两类;如果再包括重力子,则总的粒子数达到了62种之多。各种物质,及其相互之间的作用力,都是由这62道食材拼凑的结果,所以这个理论也是名副其实的杂盘理论。

所以很多物理学家语言,标准粒子模型并非终极的物理理论,而极大可能是这个终极理论的中间态。

虽然弦论被大多数的物理学所鄙视,但是它本身所具备的数学美感,却仍然让少数的物理学家对它痴迷;在这个过程中,物理学家通过弦理论已经很好的解释了波色子,在1970年,史瓦兹john scharz 和他的同事南夫andre neveu发现可以描述费米子的弦论;但是这个描述费米子的弦理论却产生了一些实验上无法验证的粒子。这种粒子具有静态质量为零,但是拥有的自旋数为2。经过一段时间的研究,才发现这个粒子的描述,就是对量子重力场理论中假设的重力子的描述,从而发现了弦理论对重力场的微妙关系。

史瓦兹和格林在1980年发现超弦在十维中存在反常相消,1984年格林和史瓦兹沿这个方向推进了一大步,构造了一种特殊的弦模型,它具有时空的超对称,因而称为超弦理论。对称概念是物理学家最有用的工具之一。数学上,当一个方程组的单元之间发生了互换变换,而整个集体仍然显出同样的性质,我们可称之为对称。对称的概念之所以在发展理论时有价值,是因为它可用于指明大相径庭的事物之间的重要相似点。

当时空维数等于十,内部对称群为32时,这个理论不存在反常。超弦理论颇有说服力地证明,曾让早期弦理论困惑的有关量子力学的矛盾全都是可以消解的。事实上,他们得心应手地处理了所有的数学上的自洽性问题,诸如超光速的快子、由点粒子模型所引起的无穷大、对称性反常、高维自由度与超对称的引入等等。他们甚至还证明,弦理论有足够能力去容纳4种基本力。不利用“弦”就显然不可能建立一个数学上调和的量子引力理论。相反地,不包括引力,看来也不可能建立一个数学上一致的弦论。超弦计算,即使包括引力在内,决不会产生“无限大”。从1984年到1986年,是所谓的“第一次超弦革命”时期。

后来人们经过研究发现,在十维空间中,实际上有5种自洽的超弦理论。对一个统一理论来说,5种可能性还是稍嫌多了一些。因此,过去一直有一些从更一般的理论导出这些超弦理论的尝试,直到1995年人们才得到一个比较完美的关于这5种超弦理论统一的图像,称之为理论。将5种超弦理论和十一维超引力统一到理论无疑是成功的,但同时也向人们提出了更大的挑战。理论在提出时并没有一个严格的数学表述,因此寻找理论的数学表述和仔细研究理论的性质就成了超弦理论研究热点,从而点燃了“第二次超弦革命”。

site stats